3.39 \(\int \sqrt{c+d (a+b x)} \, dx\)

Optimal. Leaf size=23 \[ \frac{2 (d (a+b x)+c)^{3/2}}{3 b d} \]

[Out]

(2*(c + d*(a + b*x))^(3/2))/(3*b*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0108698, antiderivative size = 23, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.154, Rules used = {33, 32} \[ \frac{2 (d (a+b x)+c)^{3/2}}{3 b d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[c + d*(a + b*x)],x]

[Out]

(2*(c + d*(a + b*x))^(3/2))/(3*b*d)

Rule 33

Int[((a_.) + (b_.)*(u_))^(m_), x_Symbol] :> Dist[1/Coefficient[u, x, 1], Subst[Int[(a + b*x)^m, x], x, u], x]
/; FreeQ[{a, b, m}, x] && LinearQ[u, x] && NeQ[u, x]

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rubi steps

\begin{align*} \int \sqrt{c+d (a+b x)} \, dx &=\frac{\operatorname{Subst}\left (\int \sqrt{c+d x} \, dx,x,a+b x\right )}{b}\\ &=\frac{2 (c+d (a+b x))^{3/2}}{3 b d}\\ \end{align*}

Mathematica [A]  time = 0.0154463, size = 23, normalized size = 1. \[ \frac{2 (d (a+b x)+c)^{3/2}}{3 b d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[c + d*(a + b*x)],x]

[Out]

(2*(c + d*(a + b*x))^(3/2))/(3*b*d)

________________________________________________________________________________________

Maple [A]  time = 0.003, size = 20, normalized size = 0.9 \begin{align*}{\frac{2}{3\,bd} \left ( bdx+ad+c \right ) ^{{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c+d*(b*x+a))^(1/2),x)

[Out]

2/3*(b*d*x+a*d+c)^(3/2)/b/d

________________________________________________________________________________________

Maxima [A]  time = 1.03498, size = 26, normalized size = 1.13 \begin{align*} \frac{2 \,{\left ({\left (b x + a\right )} d + c\right )}^{\frac{3}{2}}}{3 \, b d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*(b*x+a))^(1/2),x, algorithm="maxima")

[Out]

2/3*((b*x + a)*d + c)^(3/2)/(b*d)

________________________________________________________________________________________

Fricas [A]  time = 1.57262, size = 47, normalized size = 2.04 \begin{align*} \frac{2 \,{\left (b d x + a d + c\right )}^{\frac{3}{2}}}{3 \, b d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*(b*x+a))^(1/2),x, algorithm="fricas")

[Out]

2/3*(b*d*x + a*d + c)^(3/2)/(b*d)

________________________________________________________________________________________

Sympy [A]  time = 0.383804, size = 78, normalized size = 3.39 \begin{align*} \begin{cases} \sqrt{c} x & \text{for}\: d = 0 \wedge \left (b = 0 \vee d = 0\right ) \\x \sqrt{a d + c} & \text{for}\: b = 0 \\\frac{2 a \sqrt{a d + b d x + c}}{3 b} + \frac{2 x \sqrt{a d + b d x + c}}{3} + \frac{2 c \sqrt{a d + b d x + c}}{3 b d} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*(b*x+a))**(1/2),x)

[Out]

Piecewise((sqrt(c)*x, Eq(d, 0) & (Eq(b, 0) | Eq(d, 0))), (x*sqrt(a*d + c), Eq(b, 0)), (2*a*sqrt(a*d + b*d*x +
c)/(3*b) + 2*x*sqrt(a*d + b*d*x + c)/3 + 2*c*sqrt(a*d + b*d*x + c)/(3*b*d), True))

________________________________________________________________________________________

Giac [A]  time = 1.15791, size = 26, normalized size = 1.13 \begin{align*} \frac{2 \,{\left (b d x + a d + c\right )}^{\frac{3}{2}}}{3 \, b d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*(b*x+a))^(1/2),x, algorithm="giac")

[Out]

2/3*(b*d*x + a*d + c)^(3/2)/(b*d)